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AbstractÐWhile the scale-space approach has been widely used in computer

vision, there has been a great interest in fast implementation of scale-space

filtering. In this paper, we introduce an interpolatory subdivision scheme (ISS) for

this purpose. In order to extract the geometric features in a scale-space

representation, discrete derivative approximations are usually needed. Hence, a

general procedure is also introduced to derive exact formulae for numerical

differentiation with respect to this ISS. Then, from ISS, an algorithm is derived for

fast approximation of scale-space filtering. Moreover, the relationship between the

ISS and the Whittaker-Shannon sampling theorem and the commonly used spline

technique is discussed. As an example of the application of ISS technique, we

present some examples on fast implementation of ��-spaces as introduced by

GoÈkmen and Jain [12], which encompasses various famous edge detection filters.

It is shown that the ISS technique demonstrates high performance in fast

implementation of the scale-space filtering and feature extraction.

Index TermsÐScale-space, interpolatory subdivision scheme, B-splines, edge

detection, image representation.

æ

1 INTRODUCTION

MULTISCALE or multiresolution description of signals has been
playing a very important role since the introduction of the
Gaussian scale-space filtering by Witkin [1]. In particular, the
pyramid algorithm in recent wavelet models aims at representing
image copies at multiple resolutions efficiently. There has been
great interest in the efficient representation of image structures,
which is very useful for high level visual processing tasks such as
object recognition and image segmentation.

In the past few years, various powerful mathematical methods
have been developed for successive refinements of image
structures. Among them, the B-spline technique is a frequently
used one which can implement the Gaussian scale-space filtering
efficiently [2], [3]. In fact, B-spline technique is one type of
subdivision algorithms which provides an efficient tool for the
description of image structures [4], [5].

In this paper, an interpolatory subdivision scheme (ISS) is
introduced for the efficient implementation of scale-space repre-
sentation. ISS has been intensively studied in the areas of CAGD
and wavelet construction. For example, the famous Daubechies
wavelet can be derived from interpolatory subdivisions [6]. It was
also used successfully for surface interpolation [7], [8], [9], [10] and
for solving two-point boundary value problems [11]. In this paper,
we apply this approach for efficient implementation of scale-space
filtering. As a specific example, we discuss how it can be used for
fast realization of ��-space representation introduced in [12],
which includes some famous edge detection filters, such as Marr-
Hilderth edge detector [13], Canny edge detector [14], the first-and
second-order R-filters, Deriche's detector, Sarkar and Boyer's edge
detector, Shen and Castan's edge detector. In order to extract the
differential geometric structure, the differential operators are

usually needed. Therefore, a general procedure is also introduced

to compute the derivatives of the interpolatory basis with respect

to this ISS. Finally, the relations between the ISS and the Shannon

sampling basis and the spline approach are discussed. It can be

shown that the ISS is an efficient approach for multiresolution

image analysis.

2 AN INTERPOLATORY SUBDIVISION SCHEME FOR

CURVES

2.1 Definitions of the Subdivision Schemes

A uniform subdivision or binary subdivision scheme is defined as

follows: Suppose that the initial control points in R3 (or in

Rd; d � 1) are denoted by P0
i ; i 2 ZZ, then the refined control

points fPk�1
i ; i 2 ZZg are obtained from fPk

i g recursively by the

following refinement equations

Pk�1
i �

X
j2ZZ

aiÿ2jP
k
j ; i 2 ZZ; k � 0: �1�

A typical example of a binary subdivision scheme is provided by

schemes generating uniform B-splines of order n. In such a case,

the mask fajg is given by aj � 1
2nÿ1

n
j

� �
; j 2 ZZ: Some fast scale-

space algorithms [2], [3], [4], [5] are, in fact, based on this stationary

scheme.
The scheme (1) is called a stepwise interpolatory scheme if and

only if the masks faj; j 2 ZZg satisfy a2i � �i;8i 2 ZZ. Equation (1)

shows clearly that the scheme is a 2-step subdivision scheme. This

definition means that one can generate a curve by successive

refinements from one resolution level k to the next resolution level

k� 1 in such a way that the points fPk
i g are kept fixed, while more

mid-points are inserted by the interpolation.

2.2 Examples of the Interpolatory Subdivision Scheme

Two simple examples of interpolatory subdivision algorithms are

given below.

Example 1. Using w to denote the tension parameter, the ª4-point

interpolatory schemeº [8], [9] is defined as follows:

Pk�1
2i � Pk

i ;

Pk�1
2i�1 � �12� w��Pk

i �Pk
i�1� ÿ w�Pk

iÿ1 �Pk
i�2�:

8<: �2�

It was shown that this scheme produces a C0 interpolatory

curve provided the tension parameter w satisfies ÿ 1
2 < w < 1

2

and the curve is also C1 if 0 < w <
��
5
p ÿ1

8 . However, in

general the limit curve is not twice differentiable at any

point [7], [8], [9].

Example 2. Denoting by s the tension parameter, the following ª6-

point interpolatory schemeº is studied in [10]:

Pk�1
2i � Pk

i ;

Pk�1
2i�1 � � 9

16
� 2s��Pk

i �Pk
i�1� ÿ �

1

16
� 3s��Pk

iÿ1 �Pk
i�2�

� s�Pk
iÿ2 �Pk

i�3�:

8>>>><>>>>: �3�

It was shown that this scheme produces C2 interpolatory curves

provided the tension parameter s is a small positive number, for

example, it suffices if 0 < s < 3
256 .

From these two examples and the general subdivision algo-

rithms in [7] and [8], the following symmetric interpolatory

subdivision algorithm for curves was investigated [10], [17]:
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Pk�1
2i � Pk

i ;

Pk�1
2i�1 � Pn

j�0

Ln;j�Pk�1
iÿj �Pk�1

i�j�1�;

8<: �4�

where n is called the degree of the scheme and the coefficients

fLn;jg are chosen to be

Ln;j � ��2n� 1�!!�2
2 � 4n � �2n� 1�! �

�ÿ1�j
2j� 1

� 2n� 1
nÿ j

� �
; j � 0; 1; � � � ; n;

where

2n� 1
nÿ j

� �
denotes the binomial coefficient,

�2n� 1�!! � �2n� 1� � �2nÿ 1� � � � 3 � 1;
�2n� 1�! � �2n� 1� � �2n� � � � 2 � 1. The sum of the coefficients fLn;jg
is 1. The following theorem (cf. [10], [17]) is the main convergence

and regularity result of scheme (4).

Theorem 1. The scheme defined by (4) produces C
n
2 curves for general

initial data. Furthermore, for this choice of the coefficients, the scheme

reproduces all parametric polynomial curves of degree less than or

equal to 2n� 1.

This theorem shows that the subdivision scheme (4) produces

smooth curves and that the choice of the filter coefficients fLn;jg
gives higher order of approximations. In order to understand the

definitions of convergence and smoothness of the subdivision

scheme, we first parameterize the curve. As in [7], [8], [9], [10], [17],

the dyadic parameterization of a curve means that, at lever k � 0,

the control point Pk
i is parameterized at the dyadic points,

2ÿki; 8 i 2 ZZ, in the parameter axis, the t axis. If we define

tki :� 2ÿki; 8i 2 ZZ; k � 0; , then the control polygon fPk
i ; i 2 ZZg at

level k can be regarded as the unique piecewise linear interpolant

Pk�t� from the uniform partition � � � tkÿ1; t
k
0; t

k
1; � � � of t axis to R3

satisfying Pk�tki � � Pk
i ; i 2 ZZ. Hence, the convergence of the

scheme can be defined as the convergence of the continuous curve

sequence fPk�t�g: We say the scheme is Cm convergent (Cm

scheme) if, for any initial data, there is a continuous Cm curve P�t�
such that

lim
k!1

Pk�t� � P�t�; 8t 2 R:

Let �n�t� be the limit curve generated by (4) from the cardinal

data fPi � �i; �0�Tg, that is, �n�t� is the fundamental solution of the

subdivision scheme (4), then ��i� � �i; i 2 ZZ. Furthermore, �n

satisfies the following two-scale relation:

�n�t� � �n�2t� �
Xn
j�0

Ln;j�n�2t� �2j� 1��; t 2 R: �5�

Usually, �n is called the fundamental function. If we define the space

Vj � f
P

j cj�n�tÿ j�; t 2 Rg, (5) will define the multiresolution

sampling spaces fVj; j 2 ZZg in the following sense:

Vj � Vj�1; j 2 ZZ: �6�
The fundamental function �n is a very good approximation to

the cardinal spline function of order 2n� 2. However, a big

difference between them lies in the compactness of supports. Both

of them approach the sinc function as n goes to infinity, which is

discussed in Section 5.

2.3 Derivatives of the Interpolatory Fundamental
Function

In many visual computations, such as the edge detection, optical

flow estimation, and curvature estimation, differential operations

are usually needed [4]. In this section, a principle is presented for

the computation of derivatives of the interpolatory fundamental

function �n at integers. As an example, only the case n � 2 is

considered. More formulae of numerical differentiation can be

found in [11], [16].
From the construction of the algorithm, we know that �n is an

even function and its derivatives can be obtained by the divided

difference approximations. Using a local iteration technique, it can

be shown that the iteration matrix is given by

0 0 1 0 0 0 0 0 0
3

256 ÿ 25
256

150
256

150
256 ÿ 25

256
3

256 0 0 0
0 0 0 1 0 0 0 0 0
0 3

256 ÿ 25
256

150
256

150
256 ÿ 25

256
3

256 0 0
0 0 0 0 1 0 0 0 0
0 0 3

256 ÿ 25
256

150
256

150
256 ÿ 25

256
3

256 0
0 0 0 0 0 1 0 0 0
0 0 0 3

256 ÿ 25
256

150
256

150
256 ÿ 25

256
3

256
0 0 0 0 0 0 1 0 0

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
It can be shown from the property of reproduction of quintic

polynomials that the first six eigenvalues and their corresponding

eigenvectors of the iterative matrix are

�k � 2ÿk;

�k � ��ÿ4�k; �ÿ3�k; �ÿ2�k; �ÿ1�k; 0; 1; 2k; 3k; 4k�T ;
k � 0; 1; 2; 3; 4; 5:

In fact, all the eigenvalues of this matrix are given by

1;
1

2
;

1

4
;

9

64
;

1

8
; ÿ 9

128
;

1

16
; ÿ 1

16
;

1

32
;

and the exact values of all the corresponding normalized left and

right eigenvectors can be obtained by using Maple. For example,

the first three pairs are given by:

�0 :� �1; 1; 1; 1; 1; 1; 1; 1; 1�T ;
�0 :� �0; 0; 0; 0; 1; 0; 0; 0; 0�T ;
�1 :� �ÿ4;ÿ3;ÿ2;ÿ1; 0; 1; 2; 3; 4�T ;
�1 :� �ÿ3;ÿ128; 1272;ÿ6528; 0; 6528;ÿ1272; 128; 3�T =8760;

�2 :� �16; 9; 4; 1; 0; 1; 4; 9; 16�T ;
�2 :� �9; 192;ÿ1472; 5696;ÿ8850; 5696;ÿ1427; 192; 9�T =3360:

In [11], it was shown, given a square matrix A of order l, let the

normalized left and right (generalized) eigenvectors of A be

denoted by f�i; �ig, then for 8f 2 Rl, one can have the following

expansion:

f �
Xl
i�1

�fT �i��i: �7�

Then, using the divided difference approximation, we have the

following:

Theorem 2. The fundamental solution �2 is twice continuously

differentiable and supported on �ÿ5; 5� and its first and second order

derivatives at integers are given by

�02�i� � �sign�i�eTjij�1; �2�i� � eTjij�2; ÿ4 � i � 4;

where
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e0 :� �0; 0; 0; 0; 1; 0; 0; 0; 0�T ;
e1 :� �0; 0; 0; 1; 0; 0; 0; 0; 0�T ;
e2 :� �0; 0; 1; 0; 0; 0; 0; 0; 0�T ;
e3 :� �0; 1; 0; 0; 0; 0; 0; 0; 0�T ;
e4 :� �1; 0; 0; 0; 0; 0; 0; 0; 0�T :

More precisely, we have

�02�0� � 0; �002�0� � ÿ 295
56 ;

�02��1� � � 272
365 ; �002��1� � 356

105 ;

�02��2� � � 53
365 ; �002��2� � ÿ 1427

1680 ;

�02��3� � � 16
1095 ; �002��3� � 4

35 ;

�02��4� � � 1
2920 ; �002��4� � 3

560 :

�8�

Higher order derivatives can be found in [16]. It is easy to show

that the derivatives also satisfy a two-scale relation similar to (5).

Therefore, from the values at integers, we can compute their values

at any dyadic point easily. In Fig. 1, the 1D fundamental function

and its first and second order of derivatives are shown for n � 3.

3 FAST ALGORITHM FOR SCALE-SPACE FILTERING

USING ISS

3.1 Derivation of the Algorithm

Without loss of generality, suppose N is the number of signal

samples and the sampling rate is 1. By the convergence of the

subdivision scheme guaranteed by Theorem 1 and the multi-

resolution property (6), we can represent the signal f at a certain

resolution as

f�t� �
X
i2ZZ

f�i��n�tÿ i�: �9�

A general scale-space filtering approach is defined as the

convolution of the signal f with the window function ' with

different resolution or scale level s. For feature extraction

applications, higher order derivatives are usually needed to

describe the geometric structure of an image. Thus, we define

the following general operation in scale-space representation

explicitly,

Wsf�t� � f � '�m�s �t� �
Z
f�tÿ x�'�m��x�dx; �10�

where m denotes the mth order derivative of the window function

and '�m�s �t� � '�m��ts� is the dilated version of the window '�m��t�.
We also approximate the window function ' and its derivatives

using the same interpolatory fundamental function:

'�m��t� �
X
k2ZZ

'�i���m�n �tÿ i�; m � 0; 1; 2; � � � : �11�

Since any scale s can be represented as s � 2la; l 2 ZZ, where a

controls the number of the initial sampling points, we only

consider the dyadic scale case and assume a � 1 throughout the

paper.
Substituting (9), (11) into (10), we obtain

W2l f�t� � �
X
i2ZZ

f�i��n�tÿ i�� � �
X
k2ZZ

'�k���m�n �2ÿltÿ k��

�
X
i

X
k

f�i�'�k���n�tÿ i� � ��m�n �2ÿltÿ k��:
�12�

Due to the two-scale relation (5), it can be concluded that the

derivatives of the fundamental function satisfy the following two-

scale relation

1

2m
��m�n �

t

2
� � ��m�n �t� �

Xn
j�0

Ln;j�
�m�
n �t� �2j� 1��; t 2 R: �13�

For simplicity, we can express (13) in the following form:

��m�n �
t

2
� � �M � ��m�n ��t�; �14�

where the mask or transfer function M is given by the following

sequence:

M :� 2mfLn;n; 0; Ln;nÿ1; � � � ; 0; Ln;0; 1; Ln;0; 0; � � � ; Ln;nÿ1; 0; Ln;ng:
Therefore, (13) can be rewritten as:
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Fig. 1. One-dimensional interpolatory fundamental function �n and its derivatives �0n and �00n for n � 3.



��m�n �2ÿltÿ k� � ��m�n �
1

2
�2ÿl�1tÿ 2k��

� �M � ��m�n ��2ÿl�1tÿ 2k�

� � � � � �M �M"2 � � � � �M"2lÿ1

z�������������������}|�������������������{l

���m�n ��tÿ 2lk�;
where " 2lÿ1 represents the up-sampling operation of the filter M,

i.e., between every two adjacent samples of the filter 2lÿ1 ÿ 1 zeros

are inserted. Therefore, for this type of convolution, the complexity

is the same as that of the convolution with the filter M . It follows

that:

�n�tÿ i� � ��m�n �2ÿltÿ k� �

��n � ��m�n �M �M"2 � � � �M"2lÿ1

z�����������������}|�����������������{l

��tÿ iÿ 2lk�:
We now can express (12) as:

W2l f�t� �
X
i

X
k

f�i�'�k���n � ��m�n �M �M"2 � � � � �M"2lÿ1

z�������������������}|�������������������{l

�

�tÿ iÿ 2lk�

� �f �M �M"2 � � � � �M"2lÿ1

z�������������������}|�������������������{l

��n � ��m�n � '"2l ��t�:

�15�

By taking t � j; j 2 ZZ, we only need to compute the values

c�j� � ��n � ��m�n ��j� �
Z 1
ÿ1

�n�jÿ t���m�n �t�dt; j 2 ZZ: �16�

As discussed in Section 2, the values of �n and ��m�n at the dyadic

points can be exactly computed. Hence, the value of c�j� can be

computed numerically to sufficient accuracy. Moreover, due to the

compact support property of �n and ��m�n , we have a finite number

of nonzero values of c�j�. Then, these values are stored in a table

for fast computations. The implementation steps are summarized

below.

Scale 1 : S1f � f � c; W1f � S1f � ';
Scale 2 : S2f � S1f �M; W2f � S2f � '"2;
Scale 2j : S2j f � S2jÿ1f �M2jÿ1 ; W2j f � S2j f � '"2j ; 2 � j � J:

�17�

3.1.1 Complexity Analysis

In the above formula, the long convolution is factored into a series

of small convolutions. One can compute the scale-space filtering at

the coarse scale 2l from the fine scale 2lÿ1 by convolution with the

mask M2lÿ1 . At each iteration, the number of multiplications is

O�N�. So, for J scales, the complexity becomes O�JN�, if, by direct

convolution, the complexity at scale J is O�2JN�, which increases

very fast with the scale J .

3.2 Approximation Error Analysis

In the previous section, both the signal f and the window filter

'�m�n are projected into the multiresolution sampling spaces. Now,

we study its approximation errors.
Error estimates of the approximation to the limit curve by the

piecewise linear interpolant Pk�t� are given below. It is shown that

the scheme (5) has the approximation power of O�h2n�2�. It is also

shown that the approximation is simultaneous with their deriva-

tives. For details, see [11], [17].

Theorem 3. Suppose F�t�; t 2 R, is a regular and C2n�2 curve in

Rm; m � 2. Let P�t�; t 2 R be the limit curve generated by scheme

(4) from the initial data Pi :� F �ih�; i 2 ZZ; 0 < h < 1. Then, on

any finite interval �a; b�, we have the following estimate

kF�ht� ÿP�t�k1 �
M2n�2�F�
�2n� 2�! h

2n�2 � O�h2n�2�;

where M2n�2�F� depends only on the derivatives of F�t� and n. For

the derivative case, we also have

khmF�m��ht� ÿP�m��t�k1 � O�h2n�2ÿm�; m � 0; 1; 2; � � �n
2
:

From these results, the approximation error of computing the

scale-space filtering can be obtained:
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Fig. 2. Approximation to the Mexican hat operator using the ISS. The number of the interpolation points is 29. After four iterations, the number of interpolating points is

225, which are shown by the solid line. The theoretical curve is shown by the dotted line. The approximation error is 7.1278e-05.



kW2l f ÿ ~W2l fk1 � kf � '�m�2l
ÿ ~f � ~'

�m�
2l
k1

� kf ÿ ~fk1k'�m�k1 � k'�m�2l
ÿ ~'

�m�
2l
k1k~fk1:

Thus, the approximation order of fast scale-space filtering

algorithm (15) is O�h2n�2ÿm�.

4 IMPLEMENTATION EXAMPLES

In low level image processing, there are a number of high-

performance edge detection operators, such as the LoG operator

[13], the Canny detector [14], the first-and-second order R-filters,

Deriche's detector, Sarkar and Boyer's detector, and Shen and

Castan's edge detectors [12]. Generally, these filters are special

instances of the generalized edge detectors proposed by GoÈkmen

and Jain [12] for ��-space representation of images, where �

controls the scale of the filter and � controls the shape of the filter.

There remain urgent problems for the efficient realization of these

filters. For such a representation when � is small, there is a strong

discontinuity at the origin. Using the ISS approach, more

interpolation points can be assigned around this region. For

illustrative purposes, the interpolation results are demonstrated in

the following two examples, where the order of the subdivision

scheme is 2.
The first one is the famous Marr-Hildreth operator [13], which

is the second order derivative of the Gaussian kernel:

G�x; �� � 1������
2�
p

�
�1ÿ x2�exp�ÿ x2

2�2
�: �18�

The other is the first-order R-filter (cf. [12]):
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Fig. 3. Approximation to the first-order R-filter in [12] using the ISS. The number of the interpolation points is 25. Near the origin, more interpolation points are used. After

three iterations, the number of interpolating points is 193, which are shown by the solid line. The theoretical curve is shown by the dotted line. The approximation error is

4.6562e-04.

Fig. 4. Two-dimensional interpolatory fundamental function �3�x��3�y�.



R1�x; �� � 1

2�
exp�ÿ jxj

�
�: �19�

As shown in Figs. 2 and 3, the approximation results are very

good. The approximation error is measured in the l2 norm. The

quality of the approximation increases with the number of selected

interpolation points. Furthermore, the interpolation is local so that

we can assign more points in the area with more oscillations, as

shown in Fig. 3.

4.1 Extension to 2D

The 1D method can be extended directly to 2D case using tensor

product. Fig. 4 shows the 2D fundamental function. We also

compare the interpolation results in Fig. 5 between the different

interpolation technologies, such as the nearest neighbor interpola-

tion, the bilinear interpolation, and the cubic spline interpolation. It

is clear that the ISS is superior to both the nearest neighbor and the

bilinear interpolations. It is hard to tell the difference between the

cubic spline interpolation and ISS visually. But, the ISS technique is

more efficient since it does not solve any linear system.

5 DISCUSSIONS

5.1 Relation with the Whittaker-Shannon Sampling
Theorem

In the derivation of our algorithm, the interpolatory basis function

�n is used for multiresolution interpolation. It is therefore

necessary to establish its relation with the standard sampling

theorem, which states that a band-limited signal can be recovered

from its discrete samples using sinc bases. For this purpose, we

study the asymptotic behavior of the subdivision scheme (4) when

the order n tends to infinity.
First, it can be shown that

lim
n!1Ln;j �

1

�

�ÿ1�j
2j� 1

: �20�

Since

Ln;j � ��2n� 1�!!�2
2 � 4n � �2n� 1�!

�ÿ1�j
2j� 1

2n� 1

nÿ j
� �

� �ÿ1�j
2j� 1

��2n� 1�!!�2
2 � 22n � �n� 1�!n!

Yj�1

k�1

nÿ k� 1

n� k
n� 1

nÿ j ;

and

lim
n!1

Yj�1

k�1

nÿ k� 1

n� k
n� 1

nÿ j � 1;

we need only to consider the limit of the term

A�n� :� ��2n� 1�!!�2
2 � 22n � �n� 1�!n!

� ��2n� 1�!�2
24n�1�n� 1��n!�4 ;

where �2n� 1�!! � �2n�1�!
�2n�!! � �2n�1�!

2n�n�! is used. From Stirling's formula,
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Fig. 5. Comparison with different interpolation techniques. Top left: nearest neighbor interpolation. Top right: bilinear interpolation. Bottom left: cubic spline interpolation.

Bottom right: interpolatory subdivision scheme.



lim
n!1

n!������
2�
p

nn�1
2eÿn

� 1;

it follows that

lim
n!1A�n� � lim

n!1
� ������2�
p �2n� 1�2n�1�1

2 eÿ�2n�1��2
24n�1�n� 1�� ������2�

p
n
n�1

2 eÿn�4

� lim
n!1

1

�

2n

n� 1
��1� 1

2n
�2n�2�1� 1

2n
�3eÿ2

� 2

�
:

Therefore, we have

lim
n!1Ln;j �

1

�

�ÿ1�j
2j� 1

; j 2 ZZ:

Thus, the filter response h1�k� in the two-scale relation (5) at
infinity becomes:

h1�k� � �j for k � 2j;
L1;j for k � 2j� 1

�
� sin

k�
2

k�
2

; �21�

and the interpolatory function �n approaches the sinc function
�1�t� � sin�t

�t as n increases. This result indicates that, for a band-
limited signal and a fixed resolution, we can increase the length of
Ln;j to improve the approximation accuracy. However, this is not
necessary since a large filter size will decrease the computational
efficiency. One may notice that the fundamental spline also
possesses this property when its order tends to infinity.

5.2 Comparison with the Fundamental Spline Method

The B-spline method has been widely used for efficient imple-
mentations of scale-space filtering, in particular for linear Gaussian
scale-spaces. One of its properties is good approximation to the
Gaussian function. As a result, it is suitable for approximating
Marr-Hildreth and Canny operators [2], [4], [5]. As we have
mentioned before, the B-spline approach is one type of subdivision
schemes. However, this basis function is not interpolatory. One
possible alternative is to use the fundamental or cardinal splines.
However, since a fundamental spline function has an infinite
support, one has to truncate an infinite filter sequence or use other
approximation techniques [3], [2]. For ISS, the fundamental
function has a compact support. Moreover, one can select the
interpolation points nonuniformly. This is very suitable to
approximate certain types of edge detection filters in [12], which
have large curvature values at the origin. One can assign more
interpolation points at these locations. The disadvantage of ISS is
that the computational speed is a little slower than that of the
spline approach which involves mostly the addition operation [4],
[5] and the generated curve is not a polynomial spline.

6 CONCLUSIONS

The efficient implementation of scale-space filtering is very
important in practice. Various techniques have been used for this
purpose. In this paper, the ISS method is introduced for high
performance computation. We consider various issues such as the
computation of derivatives of interpolating functions and the
approximation errors. In view of the sampling theorem, the ISS can
be regarded as the multiresolution approximation of a signal with
the interpolating basis function of compact support, which is
superior to the standard sinc function. The ISS reproduces certain
polynomials. More importantly, it has certain data-dependent
shape preserving properties. Therefore, it is suitable for approx-
imating filters like the generalized edge detection filters discussed
in [12], which have arbitrary shapes.
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